| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 | ;(function (root, factory, undef) {	if (typeof exports === "object") {		// CommonJS		module.exports = exports = factory(require("./core"), require("./enc-base64"), require("./md5"), require("./evpkdf"), require("./cipher-core"));	}	else if (typeof define === "function" && define.amd) {		// AMD		define(["./core", "./enc-base64", "./md5", "./evpkdf", "./cipher-core"], factory);	}	else {		// Global (browser)		factory(root.CryptoJS);	}}(this, function (CryptoJS) {	(function () {	    // Shortcuts	    var C = CryptoJS;	    var C_lib = C.lib;	    var StreamCipher = C_lib.StreamCipher;	    var C_algo = C.algo;	    // Reusable objects	    var S  = [];	    var C_ = [];	    var G  = [];	    /**	     * Rabbit stream cipher algorithm.	     *	     * This is a legacy version that neglected to convert the key to little-endian.	     * This error doesn't affect the cipher's security,	     * but it does affect its compatibility with other implementations.	     */	    var RabbitLegacy = C_algo.RabbitLegacy = StreamCipher.extend({	        _doReset: function () {	            // Shortcuts	            var K = this._key.words;	            var iv = this.cfg.iv;	            // Generate initial state values	            var X = this._X = [	                K[0], (K[3] << 16) | (K[2] >>> 16),	                K[1], (K[0] << 16) | (K[3] >>> 16),	                K[2], (K[1] << 16) | (K[0] >>> 16),	                K[3], (K[2] << 16) | (K[1] >>> 16)	            ];	            // Generate initial counter values	            var C = this._C = [	                (K[2] << 16) | (K[2] >>> 16), (K[0] & 0xffff0000) | (K[1] & 0x0000ffff),	                (K[3] << 16) | (K[3] >>> 16), (K[1] & 0xffff0000) | (K[2] & 0x0000ffff),	                (K[0] << 16) | (K[0] >>> 16), (K[2] & 0xffff0000) | (K[3] & 0x0000ffff),	                (K[1] << 16) | (K[1] >>> 16), (K[3] & 0xffff0000) | (K[0] & 0x0000ffff)	            ];	            // Carry bit	            this._b = 0;	            // Iterate the system four times	            for (var i = 0; i < 4; i++) {	                nextState.call(this);	            }	            // Modify the counters	            for (var i = 0; i < 8; i++) {	                C[i] ^= X[(i + 4) & 7];	            }	            // IV setup	            if (iv) {	                // Shortcuts	                var IV = iv.words;	                var IV_0 = IV[0];	                var IV_1 = IV[1];	                // Generate four subvectors	                var i0 = (((IV_0 << 8) | (IV_0 >>> 24)) & 0x00ff00ff) | (((IV_0 << 24) | (IV_0 >>> 8)) & 0xff00ff00);	                var i2 = (((IV_1 << 8) | (IV_1 >>> 24)) & 0x00ff00ff) | (((IV_1 << 24) | (IV_1 >>> 8)) & 0xff00ff00);	                var i1 = (i0 >>> 16) | (i2 & 0xffff0000);	                var i3 = (i2 << 16)  | (i0 & 0x0000ffff);	                // Modify counter values	                C[0] ^= i0;	                C[1] ^= i1;	                C[2] ^= i2;	                C[3] ^= i3;	                C[4] ^= i0;	                C[5] ^= i1;	                C[6] ^= i2;	                C[7] ^= i3;	                // Iterate the system four times	                for (var i = 0; i < 4; i++) {	                    nextState.call(this);	                }	            }	        },	        _doProcessBlock: function (M, offset) {	            // Shortcut	            var X = this._X;	            // Iterate the system	            nextState.call(this);	            // Generate four keystream words	            S[0] = X[0] ^ (X[5] >>> 16) ^ (X[3] << 16);	            S[1] = X[2] ^ (X[7] >>> 16) ^ (X[5] << 16);	            S[2] = X[4] ^ (X[1] >>> 16) ^ (X[7] << 16);	            S[3] = X[6] ^ (X[3] >>> 16) ^ (X[1] << 16);	            for (var i = 0; i < 4; i++) {	                // Swap endian	                S[i] = (((S[i] << 8)  | (S[i] >>> 24)) & 0x00ff00ff) |	                       (((S[i] << 24) | (S[i] >>> 8))  & 0xff00ff00);	                // Encrypt	                M[offset + i] ^= S[i];	            }	        },	        blockSize: 128/32,	        ivSize: 64/32	    });	    function nextState() {	        // Shortcuts	        var X = this._X;	        var C = this._C;	        // Save old counter values	        for (var i = 0; i < 8; i++) {	            C_[i] = C[i];	        }	        // Calculate new counter values	        C[0] = (C[0] + 0x4d34d34d + this._b) | 0;	        C[1] = (C[1] + 0xd34d34d3 + ((C[0] >>> 0) < (C_[0] >>> 0) ? 1 : 0)) | 0;	        C[2] = (C[2] + 0x34d34d34 + ((C[1] >>> 0) < (C_[1] >>> 0) ? 1 : 0)) | 0;	        C[3] = (C[3] + 0x4d34d34d + ((C[2] >>> 0) < (C_[2] >>> 0) ? 1 : 0)) | 0;	        C[4] = (C[4] + 0xd34d34d3 + ((C[3] >>> 0) < (C_[3] >>> 0) ? 1 : 0)) | 0;	        C[5] = (C[5] + 0x34d34d34 + ((C[4] >>> 0) < (C_[4] >>> 0) ? 1 : 0)) | 0;	        C[6] = (C[6] + 0x4d34d34d + ((C[5] >>> 0) < (C_[5] >>> 0) ? 1 : 0)) | 0;	        C[7] = (C[7] + 0xd34d34d3 + ((C[6] >>> 0) < (C_[6] >>> 0) ? 1 : 0)) | 0;	        this._b = (C[7] >>> 0) < (C_[7] >>> 0) ? 1 : 0;	        // Calculate the g-values	        for (var i = 0; i < 8; i++) {	            var gx = X[i] + C[i];	            // Construct high and low argument for squaring	            var ga = gx & 0xffff;	            var gb = gx >>> 16;	            // Calculate high and low result of squaring	            var gh = ((((ga * ga) >>> 17) + ga * gb) >>> 15) + gb * gb;	            var gl = (((gx & 0xffff0000) * gx) | 0) + (((gx & 0x0000ffff) * gx) | 0);	            // High XOR low	            G[i] = gh ^ gl;	        }	        // Calculate new state values	        X[0] = (G[0] + ((G[7] << 16) | (G[7] >>> 16)) + ((G[6] << 16) | (G[6] >>> 16))) | 0;	        X[1] = (G[1] + ((G[0] << 8)  | (G[0] >>> 24)) + G[7]) | 0;	        X[2] = (G[2] + ((G[1] << 16) | (G[1] >>> 16)) + ((G[0] << 16) | (G[0] >>> 16))) | 0;	        X[3] = (G[3] + ((G[2] << 8)  | (G[2] >>> 24)) + G[1]) | 0;	        X[4] = (G[4] + ((G[3] << 16) | (G[3] >>> 16)) + ((G[2] << 16) | (G[2] >>> 16))) | 0;	        X[5] = (G[5] + ((G[4] << 8)  | (G[4] >>> 24)) + G[3]) | 0;	        X[6] = (G[6] + ((G[5] << 16) | (G[5] >>> 16)) + ((G[4] << 16) | (G[4] >>> 16))) | 0;	        X[7] = (G[7] + ((G[6] << 8)  | (G[6] >>> 24)) + G[5]) | 0;	    }	    /**	     * Shortcut functions to the cipher's object interface.	     *	     * @example	     *	     *     var ciphertext = CryptoJS.RabbitLegacy.encrypt(message, key, cfg);	     *     var plaintext  = CryptoJS.RabbitLegacy.decrypt(ciphertext, key, cfg);	     */	    C.RabbitLegacy = StreamCipher._createHelper(RabbitLegacy);	}());	return CryptoJS.RabbitLegacy;}));
 |